
pi t •■ M p lui i,«niinpw*umpHPVi ' i.iiiimii^i

M

i >mm i*|i"i

Mi
Mi

AD-767 335

AXIOMATIC APPROACH TO TOTAL CORRECTNESS
OF PROGRAMS

Zohar Manna, et al

Stanford University

1

Prepared for:

Advanced Research Projects Agency

July 1973

DISTRIBUTED BY:

mi]

^

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151

 - -- — ■■*^~-- '•* - — >■—- ■■ -^

' ' "!i|w^p«w(|*5Wfp«ppB«pwir«»i^^»'"-''!«"'""- I'TOHW »mil. iiiBinniii I»» p .

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM-210

STAN-CS-73-382

00
CO

CO

AXIOMATIC APPROACH TO TOTAL

CORRECTNESS OF PROGRAMS

BY

Zohar Mar.na and Amir Pnueli

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457 ., Q Q Q

July TO ufw4 "IP7rr;;

COMPUTER SCIENCE DEPARTMENT E

School of Humanities and Sciences

STANFORD UNIVERSITY
• iproducad by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Depar'mant of Commerce
Springfield, VA 22IS1

■

« .

;

\

■P""»" -1 ■ ' ■"■ ■»■^B mrm**^*— - - - — — w — ^^*^mr^* - "—'

Unclassified
St>i urilv Classification

DOCUMENT CONTRCL DATA ■ R 4 D I
Srciinly i IttsilicHion ol lilt», body ot Kbnrarl mid indeMinj »nnolnlion mmmt be «nl«f»d x-lign iht uvrrmll rtporl Is c lastilird)

nmG (NAMING ACTIVITY r Corpora ft author;

Stanford Uni ersity
Dept. of Computer Science
Stanford, C-jiifornia 9^0y

2a. REPORT SECURITY CLASSIFICATION

Unciabsified
lb GROUP

HI POR T T I TUt

AXIOMATIC APPROACH TO TOTAL CORRECTNESS OF PROGRAMS,

A OESCRIPTIVF NO TES cTVp* o/raporr and incfuaiv* dares)

technica.. report, July, 1973
•■ AU THORlSl (first name, midd/e iniliml. iaat name;

Zohar Manna and Amir Pnueli

f «■ f POR T DA T E

July 1973
7«. TOT AL NO OF PAGES

»« CONTRACT OR GRANT NO

ARPA-SD-idS
b. PROJEC T NO

Jfjf
7b NO OF RE F5

9a. ORIGINATOR'S REPORT NUMBERlS»

STAN-CS-73-582
AIM-210

»b. OTHER REPORT NOISI (Anv other numbert lhal may be as signed
ihi» report)

10 DISTr lauTION ST A TEMENT

Releasable witiiout limitations on dissemination.

11 SUPPLLMFNTABY NOTES \2 SPONSORINC, MILITARY ACTIVITY

11 ABSTRACT

We present here an axiomatic approach which enables one to prove by formal
methods that his program is "totally correct" (i.e., it terminates and is
logically correct -- does what it is supposed to do). The approach is
similar to Hoare's approach for proving that a prograin is "partially correct"
(i.e., thit whenever it terminates it produces correct results). Our extension
to Hoare's method lies in the possibility ol' proving correctness and
termination at once, and in the enlarged scope of properties that can be
proved by it.

DD,F°o1M473
S/N 0101.807-6801

(PAGE 1)
Unclassified

Security Classification

.

■MMrii

imnF*^m^*m ^^w"»»1 ■ «■■ i» ■' »»"-ww»««^"^^" M ■ ■ ■■m i *mmmmi*i^~~~^*'~*^^^*^mmmmm—mm^im**mmm'^~^**mm9mq

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO ATM-210

COMPUTER SCIENCE DEPARTMENT
REPORT CS-5Ö2

AXIOMATIC APPROACH TO TOTAL CORRECTNESS OF PROGRAMS

by

Zzhar Manna and Amir Pnueli

JULY 1975

Abstract: We present here an axijmatic approach which enables one to
pr we by formal methods that his program is "totally correct"
(i.e., it terminates and is logically correct -- does what it
is supposed to do). The approach is similar to Hoare's.
approach for proving that a program is "partially correct"
(i.e., that whenever it terminates it produces correct results)
Our extension to Hoare's method lies in the possibility jf
proving correctness and termination at once, and in the en-
larged scope of properties that can be proved by it.

I

I '
-

.

This research was suppirted in part by the Advanced Research Projects
Agency of the Office of the Secretary of Defense under Contract Ho.

DAHC 15-77'-C-0iO5.

The views and conclusions cintained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, af the Advanced Research
Projects Agency or the U.S. Government.

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

i
*

(i

UiAa^a

■^«WWWHHW' I ■ miiiiism '— -'—-» IB i .II«I

»"»-«-W-r^«

•^^r^m^v^mmmmmm •^■•"^«■■^'"'^■"•^^■'■■^

JULY 1975

I.

AXIOMATIC AFPKOACII TO idlAL CORRIUTTNESS OF PMHiUANS

by

ZOHAR MANNA and AMIR PNUELI

Applied Mathematics Department

The Weizmann Institute of Science

Rehovot, Israel.

Introduction

We present here an axiomatic approach which enables

one to prove by formal methods that Ks program is "totally

correct" (i.e., it terminates and is logically correct --

docs what it is supposed to do). The approach is similar

to Hoare •s approach [1969] for proving that a program is

"partially correct" (i.e., that whenever it terminates it

produces correct results). Our extension to Hoare's method

lies in the possibility of proving correctness and termina-

tion at once, and in the enlarged scope of properties that

can be proved by it. •

The class of programs we treat in this paper is the

class of while programs which are written in an Algol-like

language allowing assignment statements, conditional state-

ments, compound statements and while statements. Go to

statements and procedure calls arc explicitly excluded, but

this restriction does not seem essential and can he removed

by appropriate extension of the results presented here.

mmm - — ■MM»

rpi»»^"*^"*"*p»"~^^" •^^mmm^m KUII iwiHHpii. i .mwm^mmmmmm mm

2.

To review Hoare's notation, he uses assertions oi

the form

(pCx) q(x)}

(where p , q are predicates, and B is a program segment)

to mean that for every x . if p(x) holds prior to execu-

tion of B and the execution of B terminates, then the

resulting values after execution will satisfy q(7) . His

system consists of several basic assertions -- axioms-- de-

scribing the transformation on program variables effected

by simple statements, and inference rules by which asser-

tions for small segments can be combined into one assertion

for a larger segment. Among those are a composition rule,

a conditional rule, and a while rule. If starting from

the axioms about the simple statements of a program P , and

employing inference rules one is able to deduce

UCx) | P I »(x)) ,

then one has shown in fact the partial correctness of P

with respect to 4> and ^ , i.e., that for every * satis-

fying *(x) for which the execution of P terminates,

iHx) holds for the resulting variable^' values.

The assertion we will be using in our method is of the

form

" •"■ ^ *[rwmmm^r^^**i*mmm*m**m^i^m'^^*i^^***w. PWiPi^^^^^w^^^^p^^^^»^^w^p^n^wp^^»^^»Bn^^^w^PB ■■■ m

s.

< P(x) I B I qCx.x'l >

to mean that for every x , if p(x) holds prior to execu

tion of B , then the execution of B terminates and, de-

noting the set of resulting values by x' , q(x,x»} holds.

An immediate advantage of this notation is the ability to

express relations between values of variables uefore and

after the execution. In the rest of the paper we develop

the inference rules for our system which will also ensure

that termination is hereditary from constituents to larger

program segments.

Since we restrict ourselves to while programs, the

only element endangering termination is the while statement

We attack the termination problem of the while statement by

requiring the existence of a function from the program

variables'domain to a well-founded set. such that on sub-

sequent executions of the while body its value decreases.

This function serves as a counter that can decrease only a

finite number of times. It is this need to compare values

of the counter function before and after execution of the

while body which motivated us to extend the notation to

relations between two sets of program variables.

If using our inference rules one is able to deduce

< <Kx) (P (iKx.x') >

then one has shown in fact that P is totally correct

wm ■Mi wm m^mmmam

——T-«-™^- i'u • i mini ^■•^»—- " '" ■ '

4.

with respect to .)) and ^ , i.e., that for every x

satisfying *fö , the execution of P terminates and

^(x.x1) holds between the initial values x and the

resulting values x' . If one is only interested in

proving termination over * it is sufficient to show

< Kx) I P I T > ,

where T is the identically true predicate.

We should remark in passing that although our rules

are sufficient to show total correctness, they are by no

means unique or even the best possible. Many variations

and improvements probably exist.

11 • The Inference Rules

All the inference rules will be described by a set

of antecedent; (conditions under which the rule is ap-

plicable) followed by a consequent which is the assertion

deduced. Each of ehe antecedents is either an assertion

(which should have been previously established) or a logi-

cal claim. All the logical claims are considered to be

closed by universally quantifying each of their free

variables on the same line.

We present first the straightforwaru rules dealing

with assignment, conditionals and compositions and leave

the while rule, which is the most complicated, to the end.

1 ' «. •«^«^■(iw^pipp IIJII i ■ i .1 in,, i .v^aiwqBT^^vnfwvnniPVTPiiBwi- i •' ^**^*^mm IIIIHII iiHii^v^m^qpwvpR — • w^|

(a) Assignment Rule

p(x) A x'-fCx) = qfx.x')

< P(x) | x <- f(x) | q(x,x') >

This rule is essentially an axiom since it uses only logi

cal claims to create an assertion. Since f is con-

sidered a basic function (not a user-defined procedure),

termination is as obvious as correctness.

(b) Conditional Rules

(bj) If-then-else

< P(x) A t(x) | Bj | q(x,7') >

< P(x) A ~t(x) | B2 | q(x,P) >

< P(x) | if t(x) then Bj else B2 | q(x,x') > .

The rule should read as follows: If under p(x) we suc-

ceeded in showing separately that whether we proceed with

t(x) true to execute B, or with t(x) false to execute
B
2 » qC^.x') holds in both cases, then clearly if we

cross the combined conditional statement with p(x) ini-

tially true, we come out with q{x,x') .

MM me m\ i it MiiiiMmilinrar'iiliMiiii i' nn-"-*- t---1

*'■ *'' '*'-~mm*f*™™mm^*^mmmn'*n* ■ w m u JII

6.

Since the antecedents claim that both b1 and B2

when executed under the proper conditions terminate, the

termination of the conditional statement under p(xj fol

lows.

(52) If - do

< p(x) A t(x) | B | qCx.x') >

p(x) A ~t(x) z> q(x,x)

< pix) | if t(x) do B | q(x,x') > .

This is the one clause (empty else) conditional statement.

Note that if we do not execute B we have to verify that

q(x,x) holds.

The following four rules are composition rules. Some

of them facilitate composition of segments while the others allow

composition of predicates.

(c) Concatenation Rule

8
< p,^) | B, | qJx.P) >

< p2(x) | B2 | q^x.x') >

q^x.x') 3 p^x')

q.Cx.x') A q7(x'.x") 3 q(x,x")

< p, (50 | Bj ;B2 ! qCx,?') > .

(1)

(2)

(3)

(4)

aam a^.

" uim ij mm**mm*~"*m» m*« w ■ IIMII.V„ wuim ■«•■pnawHViVP « i« immtt

7.

Condition (3) ensures that the state after executiOi

of Bj satisfies p2 -- the needed precondition for B2 .

Condition (4) characterizes q(x,xM) as a transfer

relation between x before execution and x" after exe-

cution of Bj;B2 . It requires an intermediate x' which

temporarily appears after execution of B and before
i

execution of B. .

Note that by our convention (4) is universally

quanitified over x x'and x" .

(d) Consequence Rules

(dl) < rix) | B | qCx.x') >

p(xj=> r(x)

< p(x) | u | qCx.x') >

(d2) < p(x) | B | s(x,x') >

s(x,x') => qfx.x')

< p(x) I R | qCx.x') >

The validity of the rules is obvious when we consider

the meaning of the assertion.

' ■■ ■■' ' " i"mm

wmmmmmmmmmmm

B.

(e) Or Pule

< Pjfx) I ■ I q(x,x') >

< P2(x) (B | q(x,xM >

< PiC^O v p2(3r) I B I q(x,x') >

This rule creates the possibility for proof by c

an a 1 y s i s .

(f) And Rule

< P(x) I B | q^x.x') >

< P(x) I B | q2(x,x') >

ase

< P(x) | B | q^x.x') A q^x.x') >

This rule enables one to generate incremental proofs,

by proving separately two independent properties, and then

combining them by the mid rule.

Note that it is sufficient to piove termination for only one

of the antecedents' conditions of the and rule, so that in prin-

ciple we could have a stronger rule:

< P(x) | B | q^.x1) >

(P^ I B | q fx'))

< Pfx) | B | q^x.x') A q1ix') >

where we reserve the notation {} to 'partial•correctness

assert ion ' .

%

A mam —IM -_J

mmi i . w IV^J WltliMilu

«MMMOT

v.

u(x•)] > (1)

(2)

(3)

4)

(g) While Rule

< p(x) A t(x) | B | qCx.x') A (-tCx') v u(x) ;

q(x,x') A tCx«) =» p(x')

qCx.x') A qCx'.x") = q(x,x")

p(x) A ~t(x) = q(x,x)

< p(x) | while t(x) do B | qCx.x^A -tCx') >

where (w,^) is a well-founded set and u:X -* W .

The above seemingly complicated rule is devised to

overcome several difficulties caused by the need to prove

termination. Termination of a looping while statement is

essentially ensured here by Floyd's technique [1967], namely,

producing a function u whose values keep strictly decreasing

in subsequent executions of B.

Condition (1) requires establishing a well-founded set

(W,-<) with a partial order < satisfying the descending

chain condition, i.e., there is no infinite chain of elements

from W, a, >- a ^... . Also required is a partial function

u mapping some elements of our data domain X into elements

of W . If we were able to prove that after each execution

of B , u(x) V u(x') (where by writing this inequality we

also mean that uix) and uCx') are both defined), then

clearly B cannot repeatedly execute an infinite number of

times or we would violate the descending chain condition.

The demand for the existence of a descending counter

which is defined for all executions of the while body B ,

MM mmmm

' —■■ "i " " .■■■ iwii (a ■■miiiiiB w w ^ »"" --^-^——-»-——»-^-—^»«~i^p—»w»—~»^-'»—^^«^iBpip

10

I

can be relaxed for the case of the last execution of R .

Thus if wu are positive that this is the last execution of

B , we may allow the counter function to become undefined

or stop decreasing. Accordingly, we require in (1) the al-

ternatives of either ~t(x) true , implying immediate ter-

mination, or the existence of the counter function which will

also ultimately ensure termination.

Condition (2) requires that having executed B at

'east once, and having t(x') correct at this instance ,

logically establishes pU1) . p(x) is exactly the condition

we need to use fl) once more and thus propagate the validity

of q for all subsequent executions.

Condition (3) ensures that qCx^x') is transitive.

Therefore, once we showed in (1) that it holds over one exe-

cution of B , it follows that it will hold over any number of

repeated executions of B . Consequently, it will hold over

the repeating while statement.

Condition (4) deals with the case of the initially

vacant while statement, where B did not execute even once.

There also we wish to establish the final outcome q(x,x') .

Note that (1) establishos the termination of B itself.

In tlic proofs appearing in the following examples we

often wake use of the consequence rule within whil^ rule deri-

V.-IH'MI. without explicit indication. Thus, for example, wo

("•equontly use the condition:

-

'■,—"•»— ■ • ™^—^-r iin«^ i MUNI HMI v^iw^i^vmwwa

^m^HMi -«•«■..r-.

I
11

< P(x) A tfx) I B I qCx.x') A [u(x) S u(x')] >

which implies condition (1) above by t'.e consequence rule.

Similarly we use the consequent:

< p(x) | while tix) do i | qCx.^') >

omitting the conjunct -t(x') .

I

■I^MMB ^mmlmatm^mmmu mtmmm

mmmmr^mmm+^miF****' ' > mvmmimm'mm'i*m*rmm^*i^~'™^~m~~ w^imiimm^^^mmmmmivmm^mimfm

12.

Ill Illustration of the Method

We present below two examples for which we can prove

total correctness by our method. Because of the amount of

detail involved we will concentrate on proving termiration,

with only general indication of the modifications required

to add correctness.

Example 1

The following while program over the integers is

supposed to compute the greatest common divisor of two

positive integers x, and x, --gcd(x ,x) -leaving

the result in x, . To refer to prcgram segments we

use ordinary Algol labels.

P: START

f: while x ^ x? do

e: begin

whi 1 e x > x do a; x, - x2 ;

d: vhile x. > x. do c: x. ■♦■ x. - x

end

HALT .

We would like to prove that the propram P is totally

correct with respect to

<Kx, ,x2) = Xj > 0 A x2 > 0

and

■MÜ

iw^^im^i^m " ■ ■■-"■ ^^mmmm^mmmrm^mmmimmmm'^mm

^(x^x^x^x') = x; - gcdixx,x2) .

13.

We prove in detail termination only. The well-founded

set we use is the domain of non-negative integers with

the ordinary < relation. As the termination function

for all while statements we take u(x.1x.) = x ♦ x

Our proof of termination distinguishes between two

cases according to whether x, > Xj or x^ < x2 upon

entrance to the compound statement e . In the first

case, statement a is executed at least once (x, ♦ x2

decreasing), while statement c is executed 0 or more

times (Xj + x2 remaining the same or decreasing). In

the second case statement a is never executed (x1 * x2

unchanged of course), while statement c is executed at

least once (x, + x2 decreasing). We will therefore

analyze in our proof these two cases separately and then

combine their results using the Or rule.

In all the predicates of the following assertions the

conjunction x, > 0 A x > 0 is omitted.
1 2

Lemma a) (Assignment Rule)

Since x,>x, A xl=x -
1 2 J-x2 A x^x? o x^x2>x:+x'

we ^e t

< x, > x2 | a | x,*x2> x;>x; >

by the assignment rule

^mm

'^r^^»iWP?r'~^*^^—^^'^»^'■^^^^»•■■■■■^■■ww'^^Bwp^^iiiw^^Plppiw)»«1 '.^ • .I V i in—WIJW^I pin lau ■

14

f »

Lemma bl (Whilo Rult-)

Wc use the while rule with the following predicates:

p(x) S t(x) : Xj > x? ,

qCx.x') = xi»x2 > x|*x; .

rendition (1) of the while rule is justified by Lemma al.

We obtain

< x, > x2 | b x ♦x > x'+x' > Aj A2 A, A2

< X > X 2 \ X, + X, > X* ♦ X ' > 1 2 j 2

Nute that condition (4) of the while rule is trivially satis

fiod because

p(x) A n(x) 5 F .

Lemma cl (Assignment Rule)

Since

X^Xj A xj-x A X^XJ-XJ = Xj+x^xj+x^ ,

we get by the assignment rule

I c

Lemma dl (While Rule)

Assume tue following substitution:

p(x) = T , t(x) ^ x2 > Xj , and

q^x') = x, ♦ x2 ^ x| + x^ .

rendition (1) of the while rule is justified by Lemma cl.

Nu obtain

< T | d | xi + x2 ^ xj + x^ > .

Note that condition (4) is satisfied since x, ♦ x2 ^ x + x

Lrmma el (Concatenation Rule)

Combine Lemmas bl and dl and use

x1+x2
Nx|*x^ A x|*x^;>x"+x2' z> x ♦xf>X,

1
,*xy

'-'——'—"WPI«^» w^^mm^m^^m-'^^i^mm^rm ■" ■ "■' " "■' ■•• '" ■■■ "■■■ '■■II ■■ wnW^MMQI

15.

to oht ain

< x, > x, I C j X, ♦ x, > X| ♦ x' >

We now treat the case of x, < x, upon entrance to e

Lemma a2 (Assignment Rule)

Since

F A x xi-x2 A x;=x2 3 F

we have

< F | a | F > .

Lemma b2 (While Rule)

Take

t(x) = x, > x2 , p(x) ^ x, < x2 , and

q(7,x') : xj < x^ A (x, * x2 = xj + x') .

By using a consequence of Lenuna a2 we obtain

" xi < x2 I b I xj < x' A (x, * x2 = x; ♦ x«) > .

Condition (1) is satisfied here since by the consequence

rules < F j a | F > implies

< P(x) A tix) | | | qU.x') A ~t(7•) > .

Note that under the initial condition x < x the while
1 2

statement b never executes.

Lemma c2 (Assignment Rule)

By assignment rule

< «i < «a I c | x, ♦ x2 > x| ♦ x» > .

Lemma ''2 (While Rule)

Take

p(x) = t(7) x, < x2 , and

qU.x') x, ♦ x2 x' ♦ X '

^■M

mmir-^wr^^^&m^mmmmHi'i**"* • '^^^^^^wmm^^r^mmimnmii u J^T— m*m <l i" ü!»ll.llIlw«BW»pwwwP«IBBP»nm»WIBPI*W^^^»^»»^i"P"»"»

16

X ♦ X > X' ♦ X' >
1 2 I ;

Ifülii}, L+mmu c2 we obtain

< ., < K, | d

Umm» v2 (loncatenation Rule)

By tombiniiiK Lemmas b2 and d2 we obtain

< xi * x
2 I G | x, ♦ x2 > xj > x^ > .

Uwiwa e (Or Rule)

l;rom bemmas jl and e2 combined we get

* *. ^ S I • I x, ♦ x, > xj ♦ x» > .

Ivmmu f (While Rule)

Take

KJÖ x1 ^ x
2 . P(x) - xi > 0 A x2 > 0 , and

qCx.x') - Xj > 0 A x2 > 0 .

Moti« that x, > 0 A x2 > 0 was implicitly assumed in all

previous preconditions. Using Lemma e in condition (1)

w. yet :

< x, > ü A x2 > o | p | x; = x; > .

*"."'i■«•" i'i^^WWPWWWPPIW»««' I m

•MMMOT

-'—^w^»^»ii«

.

17

We have thus shown termination with the additional

information that on exit x1 = x' .
1 2

On trying to extend this result to prove correctness

as well as termination, we run into the notion of

incremental proofs, i.e., having proved some properties of

the program includintj termination, how do we prove addi-

tional properties without repeating the whole proof process.

For this particular example, this can be solved by the

following argument:

Assume that instead of any qCx.x') appearing in the

assertions we used the predicate

.

qCx.x*) A (gcdU,^) ■ £cd(x;,x;)] .

It is not difficult to ascertain that all the lemmas

remain valid. Consequently, we are able to prove for the

complete program:

<X|>0AX|>0|P| X; = x; A gcdU^x,) = gcd(x; ,xj)>.

i.e.,

< x, > o A x, > o | P | x; - ncdCx^x,) > .

>*MH

OT^pi^MPMmp««] linn 'll1 »i" iwi^«i**»pw»WBi^^»*.- i >*« • IMP«! i ii .LII» imiim^mmm-iii■• i'i««'

18.

Generalizing the above argument, we may consider any

transitive relation sCx.x') with the following properties:

vx(s(x,x)l and Vx.x^x" [s (x.x') A SCX'.X") 3S(X,X")] .

It is possible then to verify the following metatheorem:

Metatheorem. Suppose that a = < 4>(x) | P | ^(x.x1) >

Nad been proved. Let sCx.x') be a transitive relation

such that for any lemma of the form < p(x) | B j q^.x') >

used in proving a , where B is an assignment statement

of P , it is possible to prove < p(x)| B | qCx.x') A s(x,x,)> ,

Then the assertion a+ = < (j)(x) | P | ^(x.x') A SCX.X') >

is also true for the complete program.

Thus it is sufficient to treat assignment statements in

incrementing our claims. In the previous example, the only

«««ügnment statements one has to consider are

x2 ■*" x2 ' xi' ind

2 '

r
which obviously preserve the gcd function.

In order to prove the metatheorem, oue has to inspect

all the non-assignment rules and verify that if s was

preserved in the constituents it will be preserved in the

hi K^er scgwent.

mm

 ' ■ ■ ■ i""1 .™unii i UIPJUI

19. I
Example 2: Partition (Hoare [1961])

The purpose of the program given below is to rearrange

the elements of an array A of n+lf n > 2 , real numbers

A[0],. .. ,A(n] and to find two integers i and j, such

that

0 * j < i $ n

and for the rearranged array

VaVb[(n ra<iAJ<b^n)3 A[a] * A[b]] .

In other words, we would like to rearrange the elements of A

into two non-empty partitions such that those in the lower

partition A[0],. .. ,A[i-1] are less than or equal to those

in the upper partition A[j+1] A[n] , where 0 O < i ^ n .

P

s ;

m:

START;

r ♦ A(n*2]; (i.j) - (0,n);

while i 5: j do

*-! begin

e: begin b: while Afi] <rdoa: I ♦ i ♦ I ;

d: while r< Afjjd^ c: J ♦ j " 1

end ;

k: if. i ^ j do h: beg 1,1 f: A(i] 4» A[jJ;

g: (i.j) ♦ (i*l,j-l)

end

fcnd I ;

HALT.

IMM mmm m—m

« III I »«tPIPWiPlBIP"1»-»*"-""'! I l»l,n><H«U«IIMll.l JJIIJl (u nBWWBIpupp Ilia ■IIIIIB I ii ail a

20.

We will prove in detail termination only. Our proof

follows the ideas presented in Hoare's [1971] informal proof

of termination. We introduce the following abbreviations:

a(i) -. 3p[i ^ p < n A r $ A[p]]

I

ß(j) = 3q[0 ^ q < j A Afq] $ r] .

These invariants are used to ensure that while i is stepped

up and j is stepped down they do not exceed the bounds of

n and 0 respectively,

Lemma a (Assignment Rule)

o
< a(i) A ßO) A A[i] < r

| u: i -e i + 1 |

ad') A BCj') A [!' > j' v j-i > j'-i'l A n-i >n-il >

Clearly B(i) validity is invariant since j is not

modified by this statement. From a(i) correctness we infer

the existence of p which since A[p] > r must be p > i , so

that wc might take the same p to establish a(i+l) = afi') .

The statement about n - i decreasing will be used for termina

tion of the while statement b , while the function j-i will

be used for proving termination of m . Both are over the

domain of non-ncgat i vc integers. The alternatives presented

;i i ■ fha! c 11 he i tin i inn ' J on is decreasing (non - increas ing)

or j' - i' which will imply that this nuis" be the last

r-nw^mmmmnmmtmm

■HMB^Vl

21.

executiün of Ä . Note that if the second holds true, then

j ' - i * is not defined.

Lemma b (While Rule)

Using Lemma a with

pCx) = a(i) A ß(j)

qCx.x') E oi(i') A ß(j') A (i' > j« v j - i ^ j« - i']

u(x) E n - i ,

we get

< a(i) A ß(j)

I b: while A[i] < rdoa: I ♦ i ♦ 1

00') A [i- > j' v j - i ^ j« - i'] A AMi'l >. r > .

Note that we do not need aCi1) any more, but will use instead

the conclusion of the while's termination A^i'] ^ r which

also implies i' S n.

Lemma c (.Assignment Rule)

< A[i] ^ r A S(j) A A[j] > r

I c: j ♦ j - 1 |

6(3«) A A^'] ^ TA [i' > j' v j - i >, y - i'] A j > j' > .

The function ensuring termination for the inner while d is j .

Lemma d (Whi'e Rule)

From Lemma c with

pU) E Ali] >. r A S(j)

qCx.x') E ßCj') A A'li'] >, r A [i' > j' v j - i >. j' - i']

u(x) E j ,

we get

< A[i] > r A ßfj)

I d: wh i Le r'A[j)doc:j^j-l |

A' [' ' 1 >. f A (i ' > J ' v j - i - j • - i •] A A' f j '] C r >

1

warn

ii «I mm PW" WW«W»i^PW«»»WW^' —""-—"■. W1I^«^IW»P""«WP""^"!1P^»I

22.

I

t

i >. j ' - i'] >

Lemma e (Concatenation Rule)

ComMninR I.eminas b and d we get

| e: begin b; d end |

A'U'] s? r $: A'fi'] A [i- > j« v j

Lemma f (Assignment Rule)

< A[j] ^ r < A[i] A i ^ j

I f: A[i] ** A[j] |

A'[i'] ^ r ^ A'tj1] A j - i . j- - i- A i- ^ j. > .

The condition i ^ j is added since it i.i known to be true if

we enter statement h . Clearly, after exchanging A(i] and

Mj] the previous inequalities are reversed.

Lemma g (Assignment Rule)

< i O A Ap] ^ r < A[j]

I g: (i,j) ♦ (i + lj-l) |

II > j' v (j - i > j' - i* A 0(1') A 0(3')] > •

This result is obtained hy case anal/sis: Either

1 + ! ^ j " ! . in which case we have I < i* C j» < j and

we can take p = j to establish 0(1») and q = i to

establish ß(j') . The other case is i + 1 > j - 1 or, in

other words, i' > j' .

»

wr*mm

..

!

.-

z

Lewa h fCmtcatenation Rule)

Ky combining Lemmas f and g we get

< i < j A A[j] i T $ A[i]

| h: begin f; g end |

i' • j' v [j - i > j' - i' A a(i') A ßCj'h > .

Lemma k (If - do Rule)

By Lemma h wc get

< A[j] < r <: A[i]

I k: il i ^ j do h |

i' > j* v [j - i > j* - i' A aCi') A ß(j')] > .

Note that in the case where the do clause is skipped

i > j , so that the conclusion is still correct.

Lemma I (Concatenation Rule)

Combining Lemmas e and k we obtain:

< oi(i) A B(j)

| I: begin e; k end |

i' > j ' v [j - i > j- - i- A otU') A e(j")] >

Note that by the consequence rule this can be rewritten as

< «(i) A ß(j)

| i: begin e; k end |

Ki'i? j') 3 ati') A ßtj')] A ff > j' v j - i > j« - !•] >

which is in a form more useful for the next step.

Now we are ready to prove termination of the encompassing

while statement. We have shown, in fact, that after one execution

of £ starting with a(i), ß(j) both valid, we either have

i' > j' which ensures no more repetitions of l" or have

«(i')i ßU') true again and a termination function j - i

M^MMMM^M

i.«...MM.. ,F< ii im iP^B^n^F«! ii IIIK in. ii im • * ■ p. «■ ■ i w i im I x^imm^m^'

WM
 "' •" " ' ' mmmi

.-

: "

24

strictly decreasing.

Lemma m (While Rule)

From lemina e with

p(x) = a(i) A 8(j)

qCx.x') = i« ^ j- 3 [a(i') A BCj')] ,

we get

< a(i) A ß(j) | m: while i < j do l |

Lcmma » (Assignment ♦ Concatenation Rules)

Establishes the initial conditions:

< n >, 2 | s: r ^ ACn*2J; (i,j) ♦ (0,n)

Lemma ? (Concatenation Rule)

Concatunatiou of lemmas m and s yields

< n > 2 | P | T > ,

which shows termination of P .

T > .

ad1) A ß(j') > .

■MM^MHü

•^••mm^mmammi^mm^' '• IF 'J , l^^»wwr" •WfPWi^" ■w^- ! ^»»»^^^W^^^W^^^^W^^»^^^

■' wwvmm

c

References

2S

.,

FLOYD (1967]. R. w. Floyd. "Assigninj; Meanings to

Programs", Proc. Symp. Appl. Math. 19. American

Math. Soc. (196 7), pp. 19-32.

"OARI. [1961]. C. A. R. Ilonrc, "Algorithm 65 - Find".

CACM, Vol. 4, No. 7 (July 1971), p. 321.

WOARB [1969]. C. A. R. „oare. "An Axiomatic Basis of

Computer Programming", CACM, Vol. 12, No. 10

(Octoher 1969), pp. 576-580, 583.

«OARE [1971]. c. A. R. Ho.re. "Proof of a Program: FIND".

CACM, Vol. 14. No. 1 (January 1971), pp. 39-45.

1

mm •MMraaaMM ■Mi

